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Abstract 

Car following process is time-varying in essence, due to the involvement of human actions. This paper 

develops an adaptive technique for car following modeling in a traffic flow. The proposed technique 

includes an online fuzzy neural network (OFNN) which is able to adapt its rule-consequent parameters to 

the time-varying processes. The proposed OFNN is first trained by an growing binary tree learning 

algorithm in offline mode, which produces favorable extrapolation performance, and then, is adapted to the 

stream of car following data, e.g. velocity and acceleration of the target vehicle, using an adaptive least 

squares estimation. The proposed approach is validated by means of real-world car following data sets. 

Simulation results confirm the satisfactory performance of the OFNN for adaptive car following modeling 

application. 
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1. Introduction 

Modeling of real world processes are an important 

but challenging problem, faced by scientists and 

academia. This is mainly to the time-varying 

characteristics usually encountered in the real-world 

systems and processes. In cases when human actions 

are also involved, the problem of modeling becomes 

even worse, as humans often introduce complex 

behaviors into the problem. 

Modeling of car following behaviors of the drivers 

in a traffic flow, is an important task in the field of 

microscopic traffic modeling. The car following 

models (CFM) play a key role in intelligent 

transportation systems (ITS) and are seen valuable to 

collision warning (CW) and collision avoidance (CA) 

systems [1]. The CFMs describe the processes in 

which the drivers follow each other in the traffic 

stream (Fig. 1), i.e. where a follower vehicle (FV) 

follows a leading vehicle (LV) [2]. Clearly, the 

human interactions in the car following process, 

challenges the car following modeling. Various 

approaches have been proposed in the literature to 

develop car-following models, including first-

principle mathematical (or analytic) models as well as 

inputoutput models. While the analytic models, such 

as general motors (GM) and optimal velocity (OV) 

models, employ a set of algebraic or differential 

equations describe the car following behavior input-

output models, e.g. neural networks and neuro-fuzzy 

Models use car following input-output measurement 

data to develop a model matching the measurements. 

Among the first analytic car following models is 

the General Motors (GM)’ or GHR model, developed 

by Chandler, Herman and Montroll at the General 

Motors research labs in Detroit [3]. The GM model is 

a stimulus-response model, where the relative 

velocity between the FV and LV serves as the 

stimulus. 

Other important stimulus-response models include 

optimal velocity model (OV) and its derivatives [4]. 

In the OV model, it is assumed that the driver of the 

FV seeks a safe velocity determined by the distance 

from the LV. 

The generalized optimal velocity (GOV) model 

was later developed by Sawada [5] based on the 

assumption that the FV’s driver pays attention not 

only to its headway but also to the headway of the 

immediately preceding vehicle (LV). 

During the last decade, new intelligent car-

following models based on the computational 

intelligence (CI) techniques, Fuzzy logic [6], neural 

networks [7] and neuro-fuzzy models [8] have been 

developed. While fuzzy logic-based CFMs are based 

on description of the characteristics of human 

through fuzzy rules, the neural networksbased CFMs 

are usually constructed using the measurements of the 

driver’s behavior. 

As a pioneering research, Chakroborty and 

Kikuchi fuzzified the input variables of the GM 
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model using a set of fuzzy rules and developed 

designed a Takagi-Sugeno (TS) fuzzy inference 

system (FIS) for car-following modeling [6]. 

Application of Mamdani FIS for car-following 

modeling has also been reported [9]. However, it’s 

been discussed that owing to the complexities of the 

real traffic situations, a large number of fuzzy rules 

are required. Such difficulty limits the application of 

fuzzy logic for car-following modeling particularly 

for simulation of large networks [10]. 

Neural networks and neuro-fuzzy models are 

prediction oriented approaches which employ field 

measurement data to develop car-following models 

[11]. They usually use the past values of the relative 

speed, relative distance, and velocity of the FV to 

predict the acceleration or velocity of the FV [12], 

[10]. 

Despite the remarkable efforts, made by the 

researchers on developing effective car following 

models, but in almost all presented methods, the 

structure of the CFM is fixed through time and hence, 

changes and variations in the car following process, 

mainly due to human action, are not addressed. 

Therefore, it is concluded that new methods, which 

are able to take time-varying nature of the car 

following process into account, are critically needed. 

Based on the presented discussions, this paper 

focuses on developing an online fuzzy neural network 

(OFNN) to tackle the problem of car following 

process modeling. The proposed OFNN relies on an 

adaptive least squares estimation to account for 

changes in the car following process through the time. 

Moreover, the structure of the OFNN is determined 

via an input-space partitioning technique. 

Besides, the CI-based techniques, such as fuzzy 

systems and neural networks, usually produce 

satisfactory interpolation results while their 

extrapolation performance is almost degraded, usually 

dues to normalization of the fuzzy validity functions 

or activation functions [13]. To overcome this 

shortcoming, which may manifest itself more severely 

in car following applications, this paper employs an 

input-space partitioning algorithm which avoids 

normalization and hence poor extrapolation 

performance. 

This paper is organized as follows. Section 2 

provides the details of the online fuzzy neural 

network model. The car-following strategy is 

explained in Section 3 and results on simulation on 

real measurement data are reported in Section 4. 

Findings of the paper are concluded in Section 5. 

2. Online Fuzzy Neural Network 

Fuzzy neural networks (FNN) have been widely 

employed in various modeling and identification 

applications [14]-[15]. They are inherently fuzzy 

inference systems (FIS) which are at least partly 

learned from measurement data. Hence, in case of the 

data stream, adaptive algorithms may be applied to 

estimate the parameters of the FNNs and hence, result 

in online FNNs. 

The general structure of the OFNN with M fuzzy 

rules, can be expressed by, 

        0 1 1

1

M

i , i , i ,p p i

i

ŷ t t x t x x  


    
  (1) 

Where,  i , j t
 are adaptive, time-dependent 

coefficients of the consequent part of the FIS,  i   

indicate the premise part of the fuzzy rules, and 1x
 to 

px
 are the inputs of the OFNN. Error! Reference 

source not found. shows the four-layer structure of 

the OFNN for three inputs and three fuzzy rules. The 

validity functions in the second layer are computed as 

described in Section 2.1.  
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Fig1. Car-following behavior 
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Fig2. Structure of the OFNN with three inputs and three fuzzy rules 

 
 

Fig3. Partitioning of input space by growing tee example in three iterations 
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Identification of the OFNN’s Structure 

The identification of the OFNN’s structure is 

carried out through offline training. The main theme 

of the training algorithm is partitioning of the input 

space, carried out by a growing binary tree in this 

paper. The growing binary tree expands the structure 

of the OFNN in an iterative manner, until satisfactory 

performance is obtained.  

At each iteration of the training algorithm, one 

fuzzy rule is added to the rule base of the OFNN. To 

be more specific, at each iteration, the worst-

performing rule is replaced by two new rules, 

resulting in expansion of the fuzzy rule base by totally 

one rule. The partitioning of a two-dimensional input 

space by the growing binary tree is shown in Error! 

Reference source not found..   

At each iteration of the growing binary tree, the 

validity function of two new rules ( 1new
 and 

2new
) are computed by multiplying the sigmoid 

function (


) and its counterpart (
1 

) by the 

validity function of the worst-performing rule ( WPR ),  

 1new WPR  
 

(1) 

  2 1new WPR   
 

(2) 

The sigmoid functions in (1) and (2) are expressed 

by 

  
 0 1 1

1

1 e p pd d x d x
x

   


  
(3) 

where, vector di = [di,0 di,1 … di,p]T includes the 

parameters of the sigmoid function which are 

determined heuristically.  

It is seen from (1) and (2) that no normalization is 

applied on the generated validity functions, and 

hence, the poor extrapolation performance, due to the 

normalization, is avoided.  

Having determined the validity function of the 

new rules, the rule-consequent parameters of the new 

rules during the offline training, 
 0i , j

, can be 

easily estimated by a weighted least squares 

technique. Assuming that the following N  data 

samples are available,  

 

 

 

 

 

0

0

0

0
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2

T

T

T

N p

x

x
X

x N


 
 
 

  
 
 
  , 

 

 

 

0

1

1

2

N

y

y
Y

y N


 
 
 

  
 
 
 
   

(4) 

Then by considering the following local error 

minimization problem,  

     2

0

1

min 1
i

N

i i

j

I x j e j i , ,M
 

  
    

  


 
(5) 

where, 
     ˆe j y j y j 

, the following 

WLS estimation is obtained for the rule-consequent 

parameters,  

    
1

00 T T

i i i i i iR D R R D Y



 

(6) 

where,  

  
 1 0 1

1i N N p
R X  

 
 

(7) 

and,  

 

  
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0

0

1 0 0
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0 0

i

i

i

i

x ...

x ...
D

... x N



   
 
     

  
       

 
      

(8) 

This procedure is carried on until a satisfactory 

performance for the offline model is achieved.  

Online Estimation of Rule-Consequent 

Parameters 

The rule-consequent parameters of the OFNN are 

estimated by an adaptive least squares algorithm in an 

online fashion. As mentioned earlier, it is assumed 

that an OFNN has already been trained and built 

offline a priori. Then, by arrival of the new data 

samples, the rule-consequent parameters of the OFNN 

are adapted to the new data by the adaptive least 

squares algorithm.  

For the new data sample at time instant t, 
 x t

, 

the rule-consequent parameters of the TFNN are 

adapted using the following adaptive least squares 

estimation,  

        1i i i it t t e t    
 

(10) 

        1T

i ie t y t x t t  
 

(11) 

 
 

     
  

   
1

1

1
i i

T

i

i

t P t x t

x t P t x t
x t




 

 
  

(9) 

         
1

1T

i i iP t I t x t P t


  
 

(10) 

where,  
   1T Tx t x t    .  

According to Error! Reference source not 

found.-(10), the rule consequent parameters of the 

OFNN are adapted to new data samples.  

Car-Following Strategy 

The OFNN developed in this paper is used to 

predict the velocity and acceleration of the FV’s where, 
       0 1 2

T

px i x i x i x i      .  
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driver during a car-following situation. To achieve 

this goal, previous values of acceleration and velocity 

together with the distance and relative velocity 

between FV and LV are employed to build the CFM. 

The models for predicting the acceleration and 

velocity of the FV can be expressed as,  

 

 

where, fa and fv  are nonlinear functions which 

predict the future values of acceleration and velocity 

at time t + 1, respectively and the vectors a, v, vr, and 

xr include the previous values of acceleration, 

velocity, relative velocity and relative distance, 

respectively. The OFNN identifies functions fa and fv 

using the measurement data. Error! Reference 

source not found. shows the structure of car-

following modeling using the proposed approach.  

4.Simulation Results and Discussion 

To evaluate the performance of the proposed 

approach, the results of simulation on real data sets 

are presented here. For this purpose, the US Federal 

Highway Administration’s I-80 data are employed 

Error! Reference source not found.]. The data were 

collected in 0.1-sec intervals. Any measured sample 

in this data set has 18 features of each drive-vehicle-

unit (DVU), such as longitudinal and lateral position, 

velocity, acceleration, time, number of road, vehicle 

class, front vehicle, etc. Moreover, a FNN without an 

online training is used for the purpose of comparison.  

In order to assess the proposed OFNN 

performance numerically, the root man square error 

(RMSE), defined below, is used.  

  
2

1

1
RMSE

N

t t

t

ˆy y
N 

 
 

(13) 

where, 
 y t

and tŷ
 are the actual and identified 

outputs at sample t, respectively, and N is the number 

of identified samples.  

The data collected for two different vehicles are 

used to validate the proposed OFNN-based approach. 

4.1Car-Following for Vehicle A 

The velocity and acceleration profiles for vehicle 

A are shown in Error! Reference source not found.. 

Each quantity includes 450 data samples, where the 

first 350 samples are used to build the initial model in 

offline mode and the next 100 samples serve as a test 

data set to evaluate model performance in online 

mode.  

The performance of the model for this case is 

shown in Error! Reference source not found. and 

Error! Reference source not found.. Moreover, 

these Figs. demonstrate that performance of the FNN 

is inferior to the OFNN’s, particularly in case of 

acceleration. Besides, favorable extrapolation of the 

OFNN is obvious from Error! Reference source not 

found. and Error! Reference source not found..  

To perform more comprehensive comparison, the 

results obtained by both methods are also reported in 

Tables 1. The much better performance of the 

proposed approach in prediction of acceleration and 

velocity is seen from these tables.  

 

Velocity 

Model

Acceleration 

Model

Distance
Relative 

Velocity

Velocity

Acceleration

 
Fig4. velocity and acceleration modeling approach 

    1 , ,a r ra t f a v x  
 

(11) 

    1 , ,v r rv t f v v x   
 

(12) 
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Fig5. Velocity and acceleration for case A 

 

Fig6. Velocity prediction for vehicle A 

 

Table 1. RMSE comparison for case A 

 Velocity Acceleration 

FNN 1.12 2.92 

OFNN 0.62 0.56 
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Fig7. Acceleration prediction for vehicle A 

 

Fig8. Velocity and acceleration profile for case B 

 

Table 2. RMSE comparison for case B 

 Velocity Acceleration 

FNN 0.80 2.46 

OFNN 0.24 0.82 
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Fig9. Velocity prediction for case B 

 

Fig10. Acceleration prediction for case B

4.2Car Following for Vehicle B  

The velocity and acceleration profiles for vehicle 

B are shown in Error! Reference source not found.. 

Obviously the profile of the velocity is quite different 

compared to vehicle A in previous case. The target 

and predicted value of velocity and acceleration are 

shown in Error! Reference source not found. and 

Error! Reference source not found.. In this case, the 

OFNN has outperformed its offline version, i.e. FNN. 

The numerical comparisons, presented in Table 2 

confirm this conclusion.  

 

Conclusion  

This paper proposed an adaptive approach to 

model car following process in traffic flows. The 

proposed online fuzzy neural network employed an 

adaptive least squares estimation to address the time-

varying behavior of the car following processes, 

which is mainly due to the involvement of the human 

actions. Besides, a growing binary tree was also 

utilized to identify the initial structure of the OFNN 
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through offline training. The growing binary tree, 

does not apply normalization during the construction 

of the validity functions, and hence avoids poor 

extrapolation performance. The results of simulations 

using US Federal Highway Administration’s NGSIM 

data confirmed the accurate performance of the 

proposed approach.  
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